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Abstract. A new regime of magnetoresistance (MR) in systems composed of magnetic layers
separated by non-magnetic modulated structures is studied. The ability to tailor the electronic
structure of superlatticed systems enables one to engineer contrasting spin-dependent transport
properties, enhancing the magnetoresistance ratios. When the system acts as a spin filter
the MR ratios reach values many orders of magnitude larger than those of conventional giant
magnetoresistance. Rather than a mere enhancement of the magnetoresistance ratios, this new
regime involves ingenious combinations of spin-polarized currents. Moreover, it results from a
magnetic-field-induced metal–insulator transition along the modulation direction, characterizing
a highly anisotropic transport behaviour. The existence of an insulating phase circumvents the
experimental challenge of probing excessively small resistances in the current-perpendicular-to-
plane (CPP) geometry of magnetoresistance. A picture in terms of the bulk Fermi surfaces of the
constituent materials emerges and provides general guidelines on how to achieve this regime.

1. Introduction

Basic research in the physical sciences, particularly in condensed matter physics, has led
to important developments in applied physics, engineering and ultimately in industry. One
good example is the production and commercialization [1] of magnetic sensors and read heads
based on the giant magnetoresistance (GMR) effect. The GMR effect, discovered only a decade
ago [2], is characterized by a striking change in electrical resistance of metallic systems due
to an external magnetic field. It was originally found in multilayered structures, although it
has also been observed in other systems, such as granular materials [3]. In multilayers, the
magnetizations of magnetic layers separated by non-magnetic materials can be either parallel
(P) or antiparallel (AP), depending on the thickness of the latter [4]. The electrical resistance
of the system depends on the orientation of the magnetizations and therefore, by applying a
magnetic field to a multilayer whose magnetizations are antiparallel, one can align them and
affect its electrical resistance. Likewise, in granular materials, magnetic grains embedded in
non-magnetic metallic hosts may have their moments aligned by an applied magnetic field with
a consequent change in the resistance of the system. In either case, it is clear that the more
sensitive the resistance as a function of the relative orientation of the moments, the larger the
MR. There is a consensus that the origin of the effect is in the spin-dependent scattering of the
electronic carriers [5], which is the key to understanding GMR and other related phenomena.
In fact, spin-polarized transport has become the focus of several studies over the past few
years [6].
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Bearing in mind the continuing effort to manufacture high-quality magnetic sensors and
read heads, one seeks systems with large values of magnetoresistance (MR) combined with
small saturating magnetic fields [7]. These fields are usually determined by the strength of
the coupling between the magnetizations, which has been intensively studied in multilayered
structures [4]. At low temperatures, high values of MR ranging from 100% to 220% have been
reported [8], but with sizable magnetic fields. This range of MR ratios has been obtained with
conventional multilayered structures, where the non-magnetic layer separating the magnetic
material consists of a single metal. Theoretical predictions indicate that the MR can be
enhanced by considering a number of repeats of magnetic and non-magnetic metallic layers
with small thickness fluctuations [9], but the saturating magnetic fields remain of the same order
of magnitude. Alternatively, percentages of hundreds of thousands are also possible within
the so-called colossal magnetoresistance (CMR) regime that arises in manganese perovskites.
However, the magnetic field necessary to produce the CMR can be as large as 5 T [10, 11].

Here we present a detailed study of a new transport regime, hereafter referred to as
enhanced giant magnetoresistance (EGMR), characterized by large values of MR ratios
obtained with small saturating fields, a highly attractive combination from the technological
viewpoint. Such large MR ratios may arise in magnetic materials separated by non-magnetic
modulated structures and result from a spin-filtering effect leading to highly contrasting
spin-dependent transport properties. The modulation of the non-magnetic spacer introduces
additional quantum interference effects within the structure and is chiefly responsible for the
occurrence of the EGMR. The enhancement of the magnetoresistance ratio involves ingenious
combinations of the spin-polarized currents and should be distinguished from existing regimes.
In fact, it results from a metal–insulator transition only along the modulation direction,
characterizing a highly anisotropic electric behaviour.

The sequence adopted in this paper is as follows. In the next section we discuss the
magnetoresistance effect in the ballistic regime; this is followed by a description of the model.
We present a picture based on the bulk Fermi surfaces of the constituent materials which
provide general guidelines on how to suppress the conductance along a certain propagation
direction. Such anisotropy in the transport properties, when combined with spin-polarized
currents, results in spin-filtering effects that can enhance the MR ratio leading to a new regime,
which is discussed in section 3.

2. Magnetoresistance and ballistic transport

For a multilayer made of two layers of a magnetic material separated by a non-magnetic
metallic spacer, the resistance of the system depends on whether the magnetizations are P or
AP. The magnetoresistance is defined as the relative difference between the resistances in the
two configurations, i.e., MR = (RAP −RP )/RP . In terms of the conductances �, the MR can
be written as MR = (�P − �AP )/�AP . The MR can be probed in the current-in-plane (CIP)
and the current-perpendicular-to-plane (CPP) geometries. In the former the current flows in the
direction parallel to the layers and the MR is, in general, smaller than that of its perpendicular
counterpart. Although in principle larger, the MR in the CPP geometry is experimentally more
challenging because the layers usually consist of very thin films, which makes the resistances
along the perpendicular direction very small and difficult to measure [5]. In this paper we
will be concerned with the CPP magnetoresistance in multilayers where the non-magnetic
spacer has a modulated structure. In this case we show that the problem of extremely small
resistances is circumvented by the appearance of an insulating phase that arises in the EGMR
regime, making the resistances involved not as small as those of conventional CPP structures.

As far as the spin-polarized currents are concerned, it is convenient to consider the



Spin filtering and giant magnetoresistance 2835

spin-quantization axis along the magnetization direction of one of the magnetic layers. Without
spin-flip scattering the resistances for each spin channel are added in parallel, i.e., the total
conductance is a simple sum of the spin-polarized conductances (� = �↑ + �↓). It is evident
from the definitions above that the more contrasting the conductances between the P and AP
configurations, the larger the MR ratio. The contrast in the total conductance � reflects, in turn,
the contrast between the spin-polarized conductances �

↑
P and �

↓
P . In the AP configuration the

spin-polarized conductances are the same and there is no contrast between them. However,
the larger the difference between �

↑
P and �

↓
P , the smaller the �AP , leading to larger MR ratios.

Notice therefore that the ideal situation for MR is that of a perfect spin filter in which carriers are
transmitted for a certain spin polarization but blocked otherwise. In fact, there are continuing
efforts to find 100%-spin-polarized conducting materials, which, depending on the direction
of the magnetization relative to the spin polarization of the current, can function either as
conductors or as insulators [1].

The ability to produce increasingly smaller electronic devices enables one to obtain
conductances within the so-called ballistic regime. In contrast to diffusive transport, where
phonons and defects play important roles in the scattering of carriers, the ballistic regime is
characterized by sample dimensions smaller than the mean free path of the carriers. In this
case transport properties are primarily determined by the electronic structure and the geometry
of the system in the absence of impurities and/or disorder. Within the Landauer–Büttiker
formalism the CPP conductance per unit area for crystalline layers with sharp interfaces at
zero temperature is given by [5, 12]

� = e2

h

∫
d�k‖
4π2

T (�k‖, EF ) (1)

where �k‖ is the wave vector parallel to the layers, EF is the Fermi energy, T (�k‖, EF ) is the
transmission coefficient of carriers across the system, e is the electron charge and h is the Planck
constant. The integration over �k‖ reflects the absence of diffusive scattering which makes �k‖ a
conserved quantity. An alternative way of looking at �k‖ is that, as a good quantum number, it
represents independent transport channels or modes. Each of these channels may or may not
contribute significantly to the total conduction across the system, depending on whether the
corresponding states along the modulation direction are extended or evanescent, respectively.
In the latter, exponentially decaying states along the modulation direction contribute to the
conduction only by tunnelling. Such a contribution is negligible compared to those of the
extended states.

Up to this point, no particular information about the spacer was needed. Here we assume
that the non-magnetic spacer is composed of a superlatticed structure made of two layers A
and B, having respective thicknesses a and b, periodically juxtaposed. The system that we
consider is represented schematically in figure 1. To illustrate the conditions for the occurrence
of the EGMR regime we describe the electronic structure within the free-electron model, so
that electrons are free to move along the in-plane directions and feel a Kronig–Penney-like
potential along the modulation direction. The carrier motion is then split into components
parallel and perpendicular to the layers, with energies E‖ = h̄2k2

‖/2m and E⊥, respectively.
This may be a simplified description of the electronic structure, particularly for systems based
on transition metals, where sp–d hybridization effects can be very important. However, from
a qualitative point of view, it contains the basic ingredients necessary for understanding how
the EGMR regime can be established, and is sufficient to explain the main issues involved.

Figure 2 displays a typical set of spin-polarized potential profiles felt by electrons along the
modulation direction. The potential depends both on the spin polarization and on the magnetic
configuration of the system. The set of four profiles corresponds to both spin-polarized
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Figure 1. A schematic representation of the multilayered system. Two magnetic layers sandwich
a superlatticed spacer composed of layers A and B periodically juxtaposed.
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Figure 2. A schematic representation of the potential profiles along the modulation direction felt
by ↑- and ↓-spin electrons in the P and AP configurations.

electrons in both magnetic configurations. The upper and lower profiles correspond to the
P and AP configurations, respectively; the left-hand curves represent the profiles felt by ↑-
spin electrons and the right-hand ones those felt by ↓-spin electrons. The potential within the
modulated spacer is independent of the spin polarization but assumes different values within
the magnetic material, being either V↑ or V↓. For the sake of illustration, in figure 2, Nc = 3
is the number of cells (or bilayers) in the modulated spacer whose potentials are VA and VB in
the A and B regions, respectively.

According to equation (1), the CPP conductance reduces to a sum over �k‖ of solutions of
independent one-dimensional problems involving the evaluation of transmission coefficients
T (�k‖, EF ), which can be obtained using elementary quantum mechanics methods. In fact,
transfer-matrix techniques are widely used to obtain transmission coefficients across quantum
heterostructures [13–15]. In the appendix, we show one of these techniques and obtain
expressions for the transmission coefficients. For the electron-gas model we have that
T (�k‖, EF ) = T (EF − E‖) = T (E⊥). Figure 3 shows a typical curve of the transmission
coefficients as a function of the perpendicular energy component E⊥. It illustrates the majority-
spin electron transmission coefficient in the P configuration (T ↑

P ), corresponding to the potential
profile of figure 2(a). The parameters used are V↑ = 0.12, VA = 0, VB = 0.12, a = b = 4 and
Nc = 30. Here, energies and lengths are measured in atomic units. Figure 3 shows a distinct
transmission gap corresponding to certain energies with which carriers cannot propagate across
the structure. Those forbidden energies result from the Kronig–Penney mini-band structure
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Figure 3. The transmission coefficient of ↑-spin electrons in the P configuration as a function
of E⊥.

originated within the modulated spacer, which suppresses the carrier propagation along the
perpendicular direction. The existence of these forbidden transmission channels is not an
exclusive feature of the simple one-band model used to describe the electronic structure of the
modulated spacer. In fact, their presence is relatively common, and can be found in realistic
band structures of several superlattices [5]. For modulated structures based on transition
metals, the locations and sizes of the non-conducting channels, as well as the CPP MR,
may be strongly affected by sp–d hybridization. Quantum reflections at the interfaces of
the modulated structure generating such gaps, for example, can be substantially enhanced by
sp–d hybridization effects. Therefore, a quantitative analysis of the ballistic transport across
those systems would certainly require adequate treatment of such effects. However, it is worth
stressing that from a qualitative point of view, one may ignore some of the details that cause the
transmission gaps, and approximately simulate their appearance using a simple one-band model
and a suitable Kronig–Penney-like potential profile to describe the modulated structure. In this
case, the sizes and positions of the non-conducting channels are solely regulated by the heights
and widths of the Kronig–Penney potential. More specifically, their positions are determined
by the modulation periods and their sizes by the strength of the potentials involved [5]. The key
point here is the existence of gaps in the total CPP transmission across modulated structures,
and that we can use them to prevent carriers with a certain spin polarization from being
transmitted across the structure. As previously stated, this will enhance the contrast between
the spin-polarized currents and increase the MR ratio.

The conductance depends on the transmission coefficients only at the Fermi level and,
for a given EF , the parallel and perpendicular energies are related by E⊥ = EF − E‖. The
integral over �k‖ can thus be replaced by summing the transmission coefficient over E⊥ up
to EF . Therefore, a simple qualitative analysis of the conductance is possible by looking at
the transmission coefficient curve. There will be a finite conductance whenever at least one
transmission band lies below the Fermi level. In figure 3 for instance, E⊥ is varied from
V↑ = 0.12, the highest potential in this case, onwards. Notice that wherever EF is, there will
always be a lower transmission band which makes the system conduct. If no transmission
bands lay below EF , the conductance would vanish and the system would act as an insulator.
This can occur if the lowest transmission band in figure 3 is suppressed and the Fermi level
lies within the transmission gap [12]. We emphasize that such an insulating behaviour would
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occur only along the modulation direction since carriers are free to move along the in-plane
direction. This highly anisotropic property of the system, as we shall see, is essential for the
appearance of the EGMR effect.

To understand how the lowest transmission band can be suppressed, we now describe a
picture that establishes the correspondence between the transmission coefficients and the Fermi
surfaces of both magnetic and non-magnetic bulk materials. This picture provides general
guidelines for the adequate selection of spin-polarized electronic structures that give rise to
the EGMR regime. Gaps in the transmission coefficients indicate the absence of extended
states along the modulation direction. We recall that E⊥ = EF − E‖. Thus, for a given
EF , a transmission gap in the E⊥-axis corresponds to a range of �k‖-channels for which there
is no conductance. Bearing in mind that transmission through the entire structure implies
propagating modes across each of its individual components, we need to identify those channels
with extended states both in the magnetic material and in the modulated spacer. Those states
can be identified from the separate bulk Fermi surfaces. As far as the magnetic material is
concerned, we have two spin-polarized Fermi surfaces, one for ↑-spin and one for ↓-spin
which, within the electron-gas model, are simple closed spheres of different diameters. When
projected on the in-plane direction both surfaces become concentric disks indicating those
�k‖-channels that conduct across the magnetic material. The spacer Fermi surface, on the other
hand, may develop openings along the modulation direction, reflecting the absence of extended
states for certain �k‖-channels. When projected, these openings become disks and/or rings of
non-conducting channels. The existence of the openings is relatively common, and can be
found in a number of modulated structures [5]. For such values of �k‖, the associated wave
vectors of the spacer Fermi surface along the modulation direction are not real and correspond to
evanescent states. Whether the openings are centred disks or rings of non-conducting channels
in the projected Fermi surface depends on the position of the transmission gaps relative to the
Fermi level.

To illustrate the relationship between the transmission coefficients and the bulk Fermi
surfaces of the constituent materials, consider the transmission T

↑
P of figure 3. If the Fermi

level lies within the transmission gap, for instance EF = 0.23, there will be no extended
states along the modulation direction for small values of �k‖ (i.e. E⊥ ≈ EF ). That corresponds
to a region of non-conducting channels in the projection of the spacer Fermi surface on the
in-plane direction, which is represented in figure 4(b) by a centred white disk. As E⊥ is
lowered, E‖ is increased (E‖ + E⊥ = EF ), and so are the values of k‖. When E⊥ leaves
the gap, extended states along the modulation direction appear and the corresponding �k‖-
channels become conducting. Those regions of conducting and non-conducting channels are
schematically represented in the projected spacer Fermi surface in figure 4(b) by the hatched
and white regions, respectively. Figure 4(a) shows the projected majority-spin Fermi surface
of the magnetic material. The hatched disk indicates the range of conducting �k‖-channels
across the magnetic layer for majority-spin electrons. The total conductance depends on the
conducting channels that are common to the magnetic layer and the modulated spacer. If a
channel is conducting across the magnetic material but not across the spacer, it is counted as a
non-conducting mode through the system. Similarly, it is not enough to be transmitted across
the spacer if there are no conducting counterparts in the magnetic structure. It is essential
to have propagating states across both materials. By projecting the Fermi surfaces of the
modulated spacer and of the magnetic material on the �k‖-plane one can see whether there
are common channels across the entire structure giving rise to conductance. Figure 4(c) is
a superposition of the vertically hatched channels of figure 4(a) and the horizontally hatched
ones of 4(b). Since the majority-spin Fermi surface of the magnetic material is larger than the



Spin filtering and giant magnetoresistance 2839

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

(C)(A) (B)

Figure 4. Schematic representations of the Fermi surfaces projected in the parallel direction.
Hatched and white regions represent propagating and non-propagating channels, respectively.
(a) The majority-spin Fermi surface of the magnetic material; (b) the Fermi surface of the modulated
spacer; (c) the superposition of (a) and (b).

centred opening of the spacer Fermi surface, we end up in figure 4(c) with a cross-hatched ring
of common conducting channels across the entire system and those are the only channels that
contribute to the conductance.

From the above picture, the necessary conditions for making the conductance vanish
across the system, or in other words, for suppressing the lowest transmission band, become
clear. The magnetic Fermi surface has to fit into the centred opening of the spacer Fermi
surface to suppress all common conducting channels. One possibility is to enlarge the centred
disk of non-conducting channels in the spacer Fermi surface. This corresponds to enlarging
the gap between the Kronig–Penney mini-bands that contains the Fermi level, which can be
done by tuning the potential heights and/or the modulation periods. Alternatively, one could
shrink the magnetic Fermi surface by reducing the carrier concentration. Either way, the lack of
common conducting channels suppresses the associated conductance. It is worth stressing that
in this situation, despite the non-conducting character of the system, the separate components
are metallic, having their own bulk Fermi surfaces. Moreover, electrons are free to move in
the parallel direction, but are allowed to travel along the modulation direction only across a
few conducting channels, which characterizes a highly anisotropic behaviour. The picture
based on the Fermi surfaces is useful in providing guidelines on how to suppress the lowest
transmission band and the conductance along the modulation direction.

3. Spin filtering and EGMR

As mentioned before, the ideal situation corresponding to infinitely large MR ratio would be a
perfect spin filter in which carriers are transmitted for a certain spin polarization but blocked
otherwise. With the picture suggested above we can easily produce this filtering effect. The
Fermi surface of the magnetic material is split into majority- and minority-spin parts. They
are spheres with different diameters, the smallest corresponding to the minority-spin Fermi
surface. The spin-polarized electronic structures can be adjusted so that the projected Fermi
surfaces of the minority spin of the magnetic material and of the modulated spacer have no
common transmission channels. In other words, the smallest sphere fits into the opening of the
spacer Fermi surface. In this case there is no conduction and the system acts as an insulator
for carriers with this spin polarization. As far as the other spin polarization is concerned,
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the somewhat larger Fermi surface of the magnetic material overlaps with that of the spacer
and common transmission channels give rise to a sizable conductance across the system.
Therefore, we have a spin filter that conducts one type of spin-polarized electrons but not
the other. To illustrate this point we have used equation (1) to calculate the spin-polarized
conductances across a multilayer in the P configuration as a function of the minority-spin
potential V↓ for fixed V↑. This corresponds to considering magnetic materials with different
exchange splittings. Results can be seen in figure 5(a). The parameters are the same as those
used to obtain the ↑-spin transmission coefficient in figure 3, except for V↓, which varies
from V↑ = 0.12 up to EF = 0.23. For V↓ = V↑ = 0.12 there is no contrast and both
conductances are �

↑
P = �

↓
P = 0.023 (in units of e2/h). However, as V↓ is increased towards

EF the concentration of minority-spin electrons in the magnetic material is reduced and its
corresponding Fermi surface is shrunk. The conductance �

↓
P , represented by a solid line in

figure 5(a), reduces continuously and vanishes before V↓ reaches the Fermi level. The reduction
of �

↓
P reflects the decreasing number of common conducting channels across the structure and

�
↓
P goes to zero as soon as the minority-spin Fermi surface of the magnetic material fits into

the centred opening of the spacer Fermi surface, shown in figure 4(b). When this happens the
system acts as a spin filter, where ↓-spin electrons are blocked but ↑-spin ones are transmitted.
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Figure 5. (a) Conductances �
↓
P (solid line) and �

↑↓
AP (dashed line) as functions of the minority-spin

potential V↓; (b) magnetoresistance as a function of V↓.

As pointed out before, a significant contrast between the spin-polarized conductances in
the P configuration enhances the MR ratio. This becomes clear if we look at the expression
for the MR ratio in terms of the spin-polarized conductances, which is given by

MR = (�
↑
P + �

↓
P − 2�

↑↓
AP )/(2�

↑↓
AP ).

Since the magnetizations of the magnetic layers are reversed in the AP configuration, the
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potential felt by ↑-spin electrons in one magnetic layer is equivalent to that seen by ↓-spin
ones in the other. If a given spin-polarized current is blocked in the P configuration, it will
also be blocked in the AP configuration. It is clear that when spin filtering occurs, �↑↓

AP should
resemble �

↓
P . The dashed line in figure 5(a) represents the conductance in the AP configuration

for either spin polarization. In fact, both �
↓
P and �

↑↓
AP go to zero simultaneously as the projected

minority-spin Fermi surface fits into the opening of its spacer counterpart. Since we have kept
V↑ fixed and varied just V↓, �

↑
P remains unaltered and the enhanced regime is reached when

both �
↓
P and �

↑↓
AP vanish. Strictly speaking, they are not exactly zero because of quantum

tunnelling effects, but they can be very small leading to enormously large values of MR, as
shown in figure 5(b). We point out that in the region where the conductances �

↓
P and �

↑↓
AP are

finite we have ordinary GMR.
Notice that the EGMR regime results from an ingenious combination of the spin-polarized

electronic currents. In the P configuration, a spin-filtering effect blocks ↓-spin electrons but not
the ↑-spin current. In the AP configuration both spin-polarized electrons are blocked and the
system becomes insulating as far as the conduction along the modulation direction is concerned.
It is remarkable that, although each component of the structure has metallic character and
conducting channels, as a whole, the components have no common channels and the system
is not conducting along the direction perpendicular to the layers. Furthermore, electrons are
free to move along the in-plane direction in either configuration. An applied magnetic field
makes the alignment of the magnetizations change from AP to P, resulting in a transition
from insulating to spin-filtering phases. Such a magnetic-field-driven insulator-to-conductor
transition is inherent to the appearance of the EGMR regime. It is worth highlighting that the
insulating behaviour of the system in the AP configuration makes the respective resistances
large, avoiding the experimental drawback of having to probe excessively small resistances.

Alternatively, for a given magnetic material, one can reach the EGMR regime by tuning
the spacer modulation so that there are no bands in the transmission coefficient curve below
EF . This is equivalent to enlarging the centred opening of the projected spacer Fermi surface
to embrace the projected minority-spin Fermi surface, suppressing all common conducting
channels between them. To illustrate this situation we initially consider the same set of
parameters as those used for obtaining the curves of figure 5. If, in addition, we assume
that V↓ = 0.16, according to figure 5, we fall into the GMR regime, where �

↑
P and �

↓
P are

finite. By changing the modulation period to a = b = 4.22 the position of the gap is lowered
in energy and both spin-polarized transmission curves in the P configuration are shown in
figure 6. Because V↑ and V↓ differ by the exchange splitting of the spin-polarized sub-bands,
they impose different cut-offs above which the system can conduct. For this reason, the lowest
transmission band in T

↓
P is suppressed but not that in T

↑
P , as shown in figure 6. As discussed

previously, the conductance vanishes if there are no transmission bands below EF . Spin
filtering thus occurs for EF = 0.23 since �

↓
P vanishes but not �

↑
P . For a = b = 4.22 the

opening of the corresponding Fermi surface is larger, having no common channel with the
minority-spin Fermi surface of the magnetic material. Results for different values of a and b

(a = b) show that the MR reaches the enhanced regime somewhere in between a = b = 4.0
and a = b = 4.22. More precisely, it arises at a certain value of a and b for which the bottom
of the transmission gap coincides with the cut-off given by V↓. This is displayed in figure 7,
where the MR ratio is plotted as a function of the length a (a = b). The EGMR regime is
triggered for a ≈ 4.19 reaching values as large as 107%. Clearly, the ordinary GMR regime
is restored if we vary a and b further, because the transmission gap keeps moving to the left
up to the point where the spin filtering in the spin-polarized conductances disappears.

As far as the contrast between the spin-polarized conductances is concerned, perfect spin
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Figure 6. Transmission coefficients as functions of E⊥ for a = b = 4.2. (a) T
↑
P ; (b) T
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Figure 7. Magnetoresistance as a function of the thickness a (see the text).

filtering is the ideal situation, where only one spin-polarized current is allowed to travel across
the system. Strictly speaking however, the other spin-polarized current is not entirely blocked
but it is finite due to tunnelling effects. Thus, within the EGMR regime one can enhance the
MR ratio by reducing the tunnelling of the non-conducting current. This can be achieved by
thickening the modulated spacer. Figure 8(a) shows the conductances �P = �

↑
P + �

↓
P (filled

circles) and �AP = �
↑
AP +�

↓
AP (empty circles) as functions of the number of cells in the spacer.

Notice that �P remains of the same order of magnitude whereas tunnelling states across the
structure lead to exponentially decreasing �AP . Such a difference gives rise to exponentially
growing MR ratios, which can be seen from a plot of the MR as a function of the number of
cells in the spacer (figure 8(b)).
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Figure 8. (a) Conductances �P = �
↑
P + �

↓
P (filled circles) and �AP = �

↑
AP + �

↓
AP (empty circles)

as functions of the number of cells in the spacer. (b) Magnetoresistance as a function of the number
of cells in the spacer.

4. Saturating magnetic fields

A question that naturally arises is that of what the saturating magnetic field is. This
field is related to the interlayer exchange coupling between the magnetic layers, which has
been intensively discussed in the literature [4]. The magnetic coupling between the layer
magnetizations across the non-magnetic material separating them oscillates between parallel
and antiparallel as the thickness of the spacer layer is changed. In addition, the amplitude of
the oscillations slowly decays as the magnetic layers become far apart. The oscillation periods
as well as the decay rate of the coupling are dependent on the shape of the Fermi surface of
the non-magnetic material. They depend on certain properties of a few portions of the Fermi
surface, namely, on its stationary wave vectors along the growth direction. More specifically,
critical spanning wave vectors perpendicular to the layers linking two points of the bulk spacer
Fermi surface with antiparallel velocities are the only ones which effectively contribute to the
coupling [16].

Practical magnetic sensors require relatively low switching fields, which may be
accomplished by engineering spin-valve sandwich structures made with soft magnetic layers
weakly coupled to each other through a non-magnetic spacer [17]. This requires the spacer layer
to be sufficiently thick. However, since the occurrence of the EGMR results from conduction
in the ballistic regime, it is important to keep the non-magnetic spacer layer thinner than the
average spin-dependent electronic mean free paths. When both conditions are met, the EGMR
can be achieved with low fields. For such purposes, a rapidly decaying interlayer coupling may
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be useful. It is noteworthy that when the Fermi surface of the superlatticed spacer develops
openings along the modulation direction those critical wave vectors may not exist. In such a
case, the spacer Fermi surface does not meet the criteria for contributing to the coupling with a
slowly decaying oscillatory term, and the amplitude of the coupling decays exponentially with
the spacer thickness [18]. This allows very weak coupling across relatively thin modulated
spacers, which may be important for having the ballistic regime required by the EGMR to be
effective. As pointed out before, small switching magnetic fields and large MR ratios form a
highly attractive combination from the technological viewpoint.

5. Conclusions

A new regime of CPP magnetoresistance in systems made of magnetic layers separated by
non-magnetic modulated spacers has been studied. The origin of this new regime lies in
the role played by the energy gaps of the electronic structure of the modulated spacer. We
have shown that by making an adequate choice of modulation periods and potential strengths
one can produce contrasting spin-dependent conductances. When the system acts as a spin
filter, the contrast is maximum and the magnetoresistance reaches extremely large ratios.
The enhancement of the magnetoresistance ratios involves ingenious combinations of spin-
polarized currents and is associated with a magnetic-field-induced metal–insulator transition
along the modulation direction, characterizing a highly anisotropic transport behaviour. The
existence of an insulating phase in this new regime circumvents the experimental challenge of
probing excessively small resistances in the CPP magnetoresistance.

We have shown that the effect can be understood on the basis of a picture in terms of
the bulk Fermi surfaces of the magnetic material and of the modulated spacer. Within the
ballistic regime of electronic transport, each transverse mode that is conducting across the
system works independently, acting as a collection of channels in parallel. The spin-filtering
effect, essential for the occurrence of the EGMR regime, arises when the minority-spin Fermi
surface of the magnetic material fits into the opening of that of the modulated spacer. In that
case, minority-spin electrons cannot travel across the spacer and the system behaves as an
insulator for those spin-polarized electrons. Having common channels with the spacer, the
majority-spin electrons, on the other hand, are not blocked and the structure is conducting for
those carriers. The picture in terms of the Fermi surfaces provides general guidelines on how
to produce the spin-filtering effect and, consequently, on how to trigger the enhanced regime.
The simple model that we have used to describe the electronic structure explains the origin of
the EGMR regime and its relation to the modulation character of the system only qualitatively.
More realistic calculations will be important for providing information concerning the proper
matching of spin-polarized conducting channels between the ferromagnets and modulated
structure, necessary to achieve the EGMR regime in specific systems. We hope that our work
will stimulate experiments and further theoretical investigations in this field.
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Appendix

In the free-electron model, the expression for the transmission coefficient of a one-dimensional
potential of the type shown in figure 2 can be easily calculated analytically. It can be cast in a
very simple form by expanding the wave functions in terms of sin(kz) and cos(kz) rather than
the usual canonical basis exp(±ikz) [19]. The matrix representing the propagation through a
barrier A is then real and given by

A =
(

cos(kAa) − sin(kAa)/kA

kA sin(kAa) cos(kAa)

)
(A.1)

where

kA =
√

2m(E⊥ − VA)/h̄2.

A similar matrix, obtained by substituting

kB =
√

2m(E⊥ − VB)/h̄2

for kA describes the propagation through each B barrier. The conductance through a super-
latticed potential well containing n repeats of the superlattice unit cell is then given by

� = e2

h

4k/k′

(M11 + M22)2 + (M12 − M21)2
(A.2)

where Mij (i, j = 1, 2) is the element ij of the matrix

M =
(

cos(kAa) − sin(kAa)/kA

kA sin(kAa)/k cos(kAa)/k

)
B(AB)n−1

(
cos(k′L) sin(k′L)

−k′ sin(k′L) k′ cos(k′L)

)
(A.3)

where k and k′ are the wave vectors for propagation through the magnetic layers and
L = n(a + b) is the total length of the superlatticed spacer.
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